Given a sequence of positive integers and another positive integer p. The sequence is said to be a “perfect sequence” if M <= m * p where M and m are the maximum and minimum numbers in the sequence, respectively.
Now given a sequence and a parameter p, you are supposed to find from the sequence as many numbers as possible to form a perfect subsequence.
Input Specification:
Each input file contains one test case. For each case, the first line contains two positive integers N and p, where N (<= 105) is the number of integers in the sequence, and p (<= 109) is the parameter. In the second line there are N positive integers, each is no greater than 109.
Output Specification:
For each test case, print in one line the maximum number of integers that can be chosen to form a perfect subsequence.
Sample Input:
10 8
2 3 20 4 5 1 6 7 8 9
Sample Output:
8
题目大意:给定一个正整数数列,和正整数p,设这个数列中的最大值是M,最小值是m,如果M <= m * p,则称这个数列是完美数列。现在给定参数p和一些正整数,请你从中选择尽可能多的数构成一个完美数列。输入第一行给出两个正整数N(输入正数的个数)和p(给定的参数),第二行给出N个正整数。在一行中输出最多可以选择多少个数可以用它们组成一个完美数列
分析:简单题。首先将数列从小到大排序,设当前结果为result = 0,当前最长长度为temp = 0;从i = 0~n,j从i + result到n,【因为是为了找最大的result,所以下一次j只要从i的result个后面开始找就行了】每次计算temp若大于result则更新result,最后输出result的值~
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
#include <iostream> #include <algorithm> #include <vector> using namespace std; int main() { int n; long long p; scanf("%d%lld", &n, &p); vector<int> v(n); for (int i = 0; i < n; i++) cin >> v[i]; sort(v.begin(), v.end()); int result = 0, temp = 0; for (int i = 0; i < n; i++) { for (int j = i + result; j < n; j++) { if (v[j] <= v[i] * p) { temp = j - i + 1; if (temp > result) result = temp; } else { break; } } } cout << result; return 0; } |
【solution 2】如果熟练使用upper_bound(),可以使用以下解法解决问题(代码由Github用户littlesevenmo提供,在此表达感谢):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
#include <iostream> #include <algorithm> #include <stdlib.h> using namespace std; int main() { int n; long long p; cin >> n >> p; if (n == 0) { cout << n; return 0; } long long int *a = new long long int[n]; for (int i = 0; i < n; i++) cin >> a[i]; sort(a, a + n); int result = 1; for (int i = 0; i < n; i++) { result = max((int)(upper_bound(a, a+n, a[i] * p) - (a+i)), result); } cout << result; return 0; } |
❤ 点击这里 -> 订阅《PAT | 蓝桥 | LeetCode学习路径 & 刷题经验》by 柳婼