A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.
Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input:
10
1 2 3 4 5 6 7 8 9 0
Sample Output:
6 3 8 1 5 7 9 0 2 4
题目大意:给一串构成树的序列,已知该树是完全二叉搜索树,求它的层序遍历的序列
分析:总得概括来说,已知中序,从根节点开始中序遍历,按中序数组给出的顺序依次将值填入level数组对应的下标中,输出level数组可得层序遍历。
1. 因为二叉搜索树的中序满足:是一组序列的从小到大排列,所以只需将所给序列排序即可得到中序数组in
2. 假设把树按从左到右、从上到下的顺序依次编号,根节点为0,则从根结点root = 0开始中序遍历,root结点的左孩子下标是root*2+1,右孩子下标是root*2+2
3. 因为是中序遍历,所以遍历结果与中序数组in中的值从0开始依次递增的结果相同,即in[t++](t从0开始),将in[t++]赋值给level[root]数组
4. 因为树是按从左到右、从上到下的顺序依次编号的,所以level数组从0到n-1的值即所求的层序遍历的值,输出level数组即可~
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
#include <iostream> #include <algorithm> using namespace std; int in[1010], level[1010], n, t = 0; void inOrder(int root) { if (root >= n) return ; inOrder(root * 2 + 1); level[root] = in[t++]; inOrder(root * 2 + 2); } int main() { scanf("%d", &n); for (int i = 0; i < n; i++) scanf("%d", &in[i]); sort(in, in + n); inOrder(0); printf("%d", level[0]); for (int i = 1; i < n; i++) printf(" %d", level[i]); return 0; } |
❤ 点击这里 -> 订阅《PAT | 蓝桥 | LeetCode学习路径 & 刷题经验》by 柳婼