四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多4个正整数的平方和。
如果把0包括进去,就正好可以表示为4个数的平方和。
比如:
5 = 0^2 + 0^2 + 1^2 + 2^2
7 = 1^2 + 1^2 + 1^2 + 2^2
(^符号表示乘方的意思)
对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对4个数排序:
0 <= a <= b <= c <= d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法
程序输入为一个正整数N (N<5000000)
要求输出4个非负整数,按从小到大排序,中间用空格分开
例如,输入:
5
则程序应该输出:
0 0 1 2
再例如,输入:
12
则程序应该输出:
0 2 2 2
再例如,输入:
773535
则程序应该输出:
1 1 267 838
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 3000ms
分析:直接四层循环可能会超时,可以考虑先将两个数能构成的平方和保存在map里面,如果在前两层循环的时候,发现剩下的数并不能由两个数的平方构成,就直接continue跳过~否则就判断第三层循环,然后用sqrt(num – a * a – b * b – c * c)算出最后一个数temp,看它是否为整数~如果是整数就输出~并且退出程序~
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
#include <iostream> #include <cmath> #include <map> using namespace std; int main() { int num; cin >> num; int n = sqrt(num); map<int, int> m; for (int a = 0; a <= n; a++) { for (int b = a; b <= n; b++) { m[a * a + b * b] = 1; } } for (int a = 0; a <= n; a++) { for (int b = a; b <= n; b++) { if (m[num - a * a - b * b] != 1) continue; for (int c = b; c <= n; c++) { double temp = sqrt(num - a * a - b * b - c * c); if(temp == (int)temp) { cout << a << " " << b << " " << c << " " << (int)temp; return 0; } } } } return 0; } |
❤ 点击这里 -> 订阅《PAT | 蓝桥 | LeetCode学习路径 & 刷题经验》by 柳婼