蓝桥杯 ALGO-30 算法训练 入学考试(01背包,动态规划)

问题描述
  辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
  如果你是辰辰,你能完成这个任务吗?
输入格式
  第一行有两个整数T(1 <= T <= 1000)和M(1 <= M <= 100),用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)的整数,分别表示采摘某株草药的时间和这株草药的价值。
输出格式
  包括一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。
样例输入
70 3
71 100
69 1
1 2
样例输出
3
数据规模和约定
  对于30%的数据,M <= 10;
  对于全部的数据,M <= 100。

分析:01背包问题。对于每一个输入都有采和不采两种状态。
dp[i][j]表示对于前i个草药选择部分采且总时间不超过j小时后,草药的价值的最大值
可得dp[M][T]即是所求的解。
1.当当前输入的草药所需时间大于允许的最大时间j小时的时候,则不采,dp[i][j] = dp[i-1][j];
2.当当前输入的草药所需时间小于等于允许的最大时间小时的时候,考虑采或者不采两种状态,取能够使草药总价值最大的那个:dp[i][j] = max(dp[i-1][j], dp[i-1][j-a] + b);

 

❤ 点击这里 -> 订阅《PAT | 蓝桥 | LeetCode学习路径 & 刷题经验》by 柳婼

❤ 点击这里 -> 订阅《从放弃C语言到使用C++刷算法的简明教程》by 柳婼

❤ 点击这里 -> 订阅PAT甲级乙级、蓝桥杯、GPLT天梯赛、LeetCode题解离线版