问题描述
妈妈给小B买了N块糖!但是她不允许小B直接吃掉。
假设当前有M块糖,小B每次可以拿P块糖,其中P是M的一个不大于根号下M的质因数。这时,妈妈就会在小B拿了P块糖以后再从糖堆里拿走P块糖。然后小B就可以接着拿糖。
现在小B希望知道最多可以拿多少糖。
输入格式
一个整数N
输出格式
最多可以拿多少糖
样例输入
15
样例输出
6
数据规模和约定
N <= 100000
分析:动态规划问题~~首先呢~创建一个满足不大于根号下最大值MAXN的素数表,然后对素数表里面的数逐个遍历~
构建一个dp[i]数组,表示当糖果数量为i的时候所能拿的最多的糖果数量~
对于dp[i]的值:因为小B只能每次拿不大于根号下i的质因数,遍历素数表中满足条件的素数(prime[j] <= sqrt(i) && i % prime[j] == 0),更新dp[i]的值为(dp[i-2*prime[j]] + prime[j])的最大值~
即:dp[i] = max(dp[i], dp[i-2*prime[j]] + prime[j]);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
#include <iostream> #include <cmath> using namespace std; int prime[50000]; int dp[100005]; int book[100005]; int cnt = 0; void create() { int len = sqrt(100005); for(int i = 2; i <= len; i++) { if(book[i] == 0) { prime[cnt++] = i; for(int j = i * i; j <= len; j = j + i) book[j] = 1; } } } int main() { create(); int n; cin >> n; for(int i = 1; i <= n; i++) { for(int j = 0; j < cnt; j++) { if(prime[j] > sqrt(i)) break; if(i % prime[j] == 0) dp[i] = max(dp[i], dp[i-2*prime[j]] + prime[j]); } } cout << dp[n]; return 0; } |
❤ 点击这里 -> 订阅《PAT | 蓝桥 | LeetCode学习路径 & 刷题经验》by 柳婼