A reversible prime in any number system is a prime whose “reverse” in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (< 105) and D (1 < D <= 10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line “Yes” if N is a reversible prime with radix D, or “No” if not.
Sample Input:
73 10
23 2
23 10
-2
Sample Output:
Yes
Yes
No
题目大意:如果一个数本身是素数,而且在d进制下反转后的数在十进制下也是素数,就输出Yes,否则就输出No
分析:判断输入是否为负数,判断n是否为素数,把n转换为d进制再反过来转换为10进制,判断是否为素数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
#include <cstdio> #include <cmath> using namespace std; bool isprime(int n) { if(n <= 1) return false; int sqr = int(sqrt(n * 1.0)); for(int i = 2; i <= sqr; i++) { if(n % i == 0) return false; } return true; } int main() { int n, d; while(scanf("%d", &n) != EOF) { if(n < 0) break; scanf("%d", &d); if(isprime(n) == false) { printf("No\n"); continue; } int len = 0, arr[100]; do{ arr[len++] = n % d; n = n / d; }while(n != 0); for(int i = 0; i < len; i++) n = n * d + arr[i]; printf("%s", isprime(n) ? "Yes\n" : "No\n"); } return 0; } |
❤ 点击这里 -> 订阅《PAT | 蓝桥 | LeetCode学习路径 & 刷题经验》by 柳婼