An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: “Push X” where X is the index of the node being pushed onto the stack; or “Pop” meaning to pop one node from the stack.
Output Specification:
For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:
6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop
Sample Output:
3 4 2 6 5 1
题目大意:用栈的形式给出一棵二叉树的建立的顺序,求这棵二叉树的后序遍历
分析:栈实现的是二叉树的中序遍历(左根右),而每次push入值的顺序是二叉树的前序遍历(根左右),所以该题可以用二叉树前序和中序转后序的方法做~
root为当前子树的根结点在前序pre中的下标,start和end为当前子树的最左边和最右边的结点在中序in中的下标。用i找到当前子树的根结点root在中序中的下标,然后左边和右边就分别为当前根结点root的左子树和右子树。递归实现~
Update:Github用户littlesevenmo给我发issue提出题目并没有说所有节点的值互不相同。因此,在有多个节点的值相同的情况下,之前的代码会输出错误的结果,所以修改后的代码中添加了key作为索引,前中后序中均保存索引值,然后用value存储具体的值,修改后的代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
#include <cstdio> #include <vector> #include <stack> #include <cstring> using namespace std; vector<int> pre, in, post,value; void postorder(int root, int start, int end) { if (start > end) return; int i = start; while (i < end && in[i] != pre[root]) i++; postorder(root + 1, start, i - 1); postorder(root + 1 + i - start, i + 1, end); post.push_back(pre[root]); } int main() { int n; scanf("%d", &n); char str[5]; stack<int> s; int key=0; while (~scanf("%s", str)) { if (strlen(str) == 4) { int num; scanf("%d", &num); value.push_back(num); pre.push_back(key); s.push(key++); } else { in.push_back(s.top()); s.pop(); } } postorder(0, 0, n - 1); printf("%d", value[post[0]]); for (int i = 1; i < n; i++) printf(" %d",value[post[i]]); return 0; } |
❤ 点击这里 -> 订阅《PAT | 蓝桥 | LeetCode学习路径 & 刷题经验》by 柳婼