An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print ythe root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88
题目大意:AVL树是自平衡二叉搜索树。 在AVL树中,任何节点的两个子子树的高度最多相差一个;如果在任何时候它们相差多于一个,则重新平衡以恢复此属性。 图1-4说明了旋转规则~现在给出一系列插入,要求输出根节点的值~
分析:写出建AVL(平衡二叉搜索树)的代码模版即可,rotateLeft表示左旋,rotateRight表示右旋,rotateLeftRight表示先左旋后右旋,rotateRightLeft表示先右旋后左旋,getHeight表示获取传入结点的子树的高度,insert表示插入建树的过程,如果root为空,直接新建结点插入即可~如果当前要插入的值小于root->val,则插入root的左子树;如果当前要插入的值大于root->val,则插入root的右子树~如果插入后左右子树高度差大于1,再根据值的大小比较进行旋转调整使树平衡~插入完成后返回root指针赋值给main函数里的root~最后输出root的val值~
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
#include <iostream> using namespace std; struct node { int val; struct node *left, *right; }; node *rotateLeft(node *root) { node *t = root->right; root->right = t->left; t->left = root; return t; } node *rotateRight(node *root) { node *t = root->left; root->left = t->right; t->right = root; return t; } node *rotateLeftRight(node *root) { root->left = rotateLeft(root->left); return rotateRight(root); } node *rotateRightLeft(node *root) { root->right = rotateRight(root->right); return rotateLeft(root); } int getHeight(node *root) { if(root == NULL) return 0; return max(getHeight(root->left), getHeight(root->right)) + 1; } node *insert(node *root, int val) { if(root == NULL) { root = new node(); root->val = val; root->left = root->right = NULL; } else if(val < root->val) { root->left = insert(root->left, val); if(getHeight(root->left) - getHeight(root->right) == 2) root = val < root->left->val ? rotateRight(root) : rotateLeftRight(root); } else { root->right = insert(root->right, val); if(getHeight(root->left) - getHeight(root->right) == -2) root = val > root->right->val ? rotateLeft(root) : rotateRightLeft(root); } return root; } int main() { int n, val; scanf("%d", &n); node *root = NULL; for(int i = 0; i < n; i++) { scanf("%d", &val); root = insert(root, val); } printf("%d", root->val); return 0; } |
❤ 点击这里 -> 订阅《PAT | 蓝桥 | LeetCode学习路径 & 刷题经验》by 柳婼