A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes’ numbers.
Output Specification:
For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print “Error: K components” where K is the number of connected components in the graph.
Sample Input 1:
5
1 2
1 3
1 4
2 5
Sample Output 1:
3
4
5
Sample Input 2:
5
1 3
1 4
2 5
3 4
Sample Output 2:
Error: 2 components
题目大意:给出n个结点(1~n)之间的n条边,问是否能构成一棵树,如果不能构成则输出它有的连通分量个数,如果能构成一棵树,输出能构成最深的树的高度时,树的根结点。如果有多个,按照从小到大输出。
分析:首先深度优先搜索判断它有几个连通分量。如果有多个,那就输出Error: x components,如果只有一个,就两次深度优先搜索,先从一个结点dfs后保留最高高度拥有的结点们,然后从这些结点中的其中任意一个开始dfs得到最高高度的结点们,这两个结点集合的并集就是所求
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
#include <iostream> #include <vector> #include <set> #include <algorithm> using namespace std; int n, maxheight = 0; vector<vector<int>> v; bool visit[10010]; set<int> s; vector<int> temp; void dfs(int node, int height) { if(height > maxheight) { temp.clear(); temp.push_back(node); maxheight = height; } else if(height == maxheight){ temp.push_back(node); } visit[node] = true; for(int i = 0; i < v[node].size(); i++) { if(visit[v[node][i]] == false) dfs(v[node][i], height + 1); } } int main() { scanf("%d", &n); v.resize(n + 1); int a, b, cnt = 0, s1 = 0; for(int i = 0; i < n - 1; i++) { scanf("%d%d", &a, &b); v[a].push_back(b); v[b].push_back(a); } for(int i = 1; i <= n; i++) { if(visit[i] == false) { dfs(i, 1); if(i == 1) { if (temp.size() != 0) s1 = temp[0]; for(int j = 0; j < temp.size(); j++) s.insert(temp[j]); } cnt++; } } if(cnt >= 2) { printf("Error: %d components", cnt); } else { temp.clear(); maxheight = 0; fill(visit, visit + 10010, false); dfs(s1, 1); for(int i = 0; i < temp.size(); i++) s.insert(temp[i]); for(auto it = s.begin(); it != s.end(); it++) printf("%d\n", *it); } return 0; } |
❤ 点击这里 -> 订阅《PAT | 蓝桥 | LeetCode学习路径 & 刷题经验》by 柳婼