L2-029 特立独行的幸福 (25 分)-PAT 团体程序设计天梯赛 GPLT

对一个十进制数的各位数字做一次平方和,称作一次迭代。如果一个十进制数能通过若干次迭代得到 1,就称该数为幸福数。1 是一个幸福数。此外,例如 19 经过 1 次迭代得到 82,2 次迭代后得到 68,3 次迭代后得到 100,最后得到 1。则 19 就是幸福数。显然,在一个幸福数迭代到 1 的过程中经过的数字都是幸福数,它们的幸福是依附于初始数字的。例如 82、68、100 的幸福是依附于 19 的。而一个特立独行的幸福数,是在一个有限的区间内不依附于任何其它数字的;其独立性就是依附于它的的幸福数的个数。如果这个数还是个素数,则其独立性加倍。例如 19 在区间[1, 100] 内就是一个特立独行的幸福数,其独立性为 2×4=8。

另一方面,如果一个大于1的数字经过数次迭代后进入了死循环,那这个数就不幸福。例如 29 迭代得到 85、89、145、42、20、4、16、37、58、89、…… 可见 89 到 58 形成了死循环,所以 29 就不幸福。

本题就要求你编写程序,列出给定区间内的所有特立独行的幸福数和它的独立性。

输入格式:
输入在第一行给出闭区间的两个端点:1<A<B≤104。

输出格式:
按递增顺序列出给定闭区间 [A,B] 内的所有特立独行的幸福数和它的独立性。每对数字占一行,数字间以 1 个空格分隔。

如果区间内没有幸福数,则在一行中输出 SAD。

输入样例 1:
10 40

输出样例 1:
19 8
23 6
28 3
31 4
32 3
注意:样例中,10、13 也都是幸福数,但它们分别依附于其他数字(如 23、31 等等),所以不输出。其它数字虽然其实也依附于其它幸福数,但因为那些数字不在给定区间 [10, 40] 内,所以它们在给定区间内是特立独行的幸福数。

输入样例 2:
110 120

输出样例 2:
SAD

分析:1、判断一个数是不是特立独行的幸福数,同时累计其独立性。2、判断其是不是素数,是的话独立性需要乘二。用num[i]储存第i个元素的独立性,用notIndep[i]表示第i各数不是特立独行的幸福数——将所有迭代产生的数标记为1,ans用来储存可能的幸福数,mark用来存储一个数迭代过程中产生的数,如果重复则说明不是幸福数~ 

❤ 点击这里 -> 订阅《PAT | 蓝桥 | LeetCode学习路径 & 刷题经验》by 柳婼

❤ 点击这里 -> 订阅《从放弃C语言到使用C++刷算法的简明教程》by 柳婼

❤ 点击这里 -> 订阅PAT甲级乙级、蓝桥杯、GPLT天梯赛、LeetCode题解离线版