问题描述
有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数)。
要求n个物品中,任取若干个装入箱内,使箱子的剩余空间为最小。
输入格式
第一行为一个整数,表示箱子容量;
第二行为一个整数,表示有n个物品;
接下来n行,每行一个整数表示这n个物品的各自体积。
输出格式
一个整数,表示箱子剩余空间。
样例输入
24
6
8
3
12
7
9
7
样例输出
0
分析:dp[i][j]表示前i件物品选则部分装入体积为j的背包后,背包总共所占的最大体积,
一共有n件物品,那么dp[n][v]就是前n件物品选择部分装入体积为v的背包后,背包总共占有的最大体积
1.当当前输入的物品体积大于背包容量,则不装入背包,dp[i][j] = dp[i-1][j];
2.当当前输入的物品体积小于等于背包容量,考虑装或者不装两种状态,取体积最大的那个:dp[i][j] = max(dp[i-1][j], dp[i-1][j-t] + t);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
#include <iostream> using namespace std; int dp[31][20001]; int main() { int v, n; cin >> v >> n; for(int i = 1; i <= n; i++) { int t; cin >> t; for(int j = 1; j <= v; j++) { if (j >= t) { dp[i][j] = max(dp[i-1][j], dp[i-1][j-t] + t); } else { dp[i][j] = dp[i-1][j]; } } } cout << v - dp[n][v]; return 0; } |