A magical string S consists of only ‘1’ and ‘2’ and obeys the following rules:
The string S is magical because concatenating the number of contiguous occurrences of characters ‘1’ and ‘2’ generates the string S itself.
The first few elements of string S is the following: S = “1221121221221121122……”
If we group the consecutive ‘1’s and ‘2’s in S, it will be:
1 22 11 2 1 22 1 22 11 2 11 22 ……
and the occurrences of ‘1’s or ‘2’s in each group are:
1 2 2 1 1 2 1 2 2 1 2 2 ……
You can see that the occurrence sequence above is the S itself.
Given an integer N as input, return the number of ‘1’s in the first N number in the magical string S.
Note: N will not exceed 100,000.
Example 1:
Input: 6
Output: 3
Explanation: The first 6 elements of magical string S is “12211” and it contains three 1’s, so return 3.
分析:直接按照这个字符串的构造方法还原这个字符串s:首先初始化s = “122”,让index指向下标为2处,开始根据index指向的字符在s后面添加字符串,如果指向的是2就添加2个,如果指向的是1就添加一个,具体添加什么字符以当前s的末尾一位的字符是1还是2为准,如果s当前最后一个字符是1就添加2,反之添加1~还原好了之后用count直接计算字符串从begin()到n长度处一共有多少个’1’字符~~
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
class Solution { public: int magicalString(int n) { string s = "122"; int index = 2; while(s.length() < n) { int cnt = s[index] - '0'; char c = (s.back() == '1' ? '2' : '1'); string temp(cnt, c); s += temp; index++; } return count(s.begin(), s.begin() + n, '1'); } }; |