Given n non-negative integers a1, a2, …, an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container and n is at least 2.
题目大意:给出一个数组height, height[i] = j表示横坐标为i处的高为j,以(i, j)与x轴作垂线段,计算两条垂线段和x轴组成的容器能装的最多的水的容量是多少~
分析:容器两条边中取最短的那条边为影响容器容积的高,所以说,我们先假设left和right分别在最左边最右边,要想求得容器容积的最大值,需要考虑改变最短边的高度,如果左边短就让left++,如果右边短就让right–,直到直到一个area容积最大的值返回~
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
class Solution { public: int maxArea(vector<int>& height) { int left = 0, right = height.size() - 1, area = 0; while(left < right) { area = max(area, min(height[left], height[right]) * (right - left)); if(height[left] < height[right]) left++; else right--; } return area; } }; |