Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
分析:用一个dp二维数组标记当前方格的最小值~
0.当i == 0 && j == 0的时候,dp[i][j] = grid[i][j];
1.对于i==0的时候,为最上面一排,当前方格只能由左边方格来,所以dp[i][j] = dp[i][j-1] + grid[i][j];
2.对于j==0的时候,为最左边一排,当前方格只能由上边方格来,所以dp[i][j] = dp[i-1][j] + grid[i][j];
3.其他情况下,dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j];
最后直到一直递推输出到终点(m-1, n-1)的时候return dp[m-1][n-1];~~
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
class Solution { public: int minPathSum(vector<vector<int>>& grid) { int m = grid.size(); int n = grid[0].size(); if(m == 0 || n == 0) return 0; vector<vector<int>> dp(m, vector<int>(n)); for(int i = 0; i < m; i++) { for(int j = 0; j < n; j++) { if(i == 0 && j == 0) { dp[i][j] = grid[i][j]; } else if(i == 0) { dp[i][j] = dp[i][j-1] + grid[i][j]; } else if(j == 0) { dp[i][j] = dp[i-1][j] + grid[i][j]; } else { dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]; } } } return dp[m-1][n-1]; } }; |