The following is from Max Howell @twitter:
Google: 90% of our engineers use the software you wrote (Homebrew), but you can’t invert a binary tree on a whiteboard so fuck off.
Now it’s your turn to prove that YOU CAN invert a binary tree!
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<=10) which is the total number of nodes in the tree — and hence the nodes are numbered from 0 to N-1. Then N lines follow, each corresponds to a node from 0 to N-1, and gives the indices of the left and right children of the node. If the child does not exist, a “-” will be put at the position. Any pair of children are separated by a space.
Output Specification:
For each test case, print in the first line the level-order, and then in the second line the in-order traversal sequences of the inverted tree. There must be exactly one space between any adjacent numbers, and no extra space at the end of the line.
Sample Input:
8
1 –
– –
0 –
2 7
– –
– –
5 –
4 6
Sample Output:
3 7 2 6 4 0 5 1
6 5 7 4 3 2 0 1
题目大意:反转一棵二叉树,给出原二叉树的每个结点的左右孩子,输出它的层序和中序遍历~
分析:1. 反转二叉树就是存储的时候所有左右结点都交换。
2. 二叉树使用{id, l, r, index, level}存储每个结点的id, 左右结点,下标值,和当前层数~
3. 根结点是所有左右结点中没有出现的那个结点~
4. 已知根结点,用递归的方法可以把中序遍历的结果push_back到数组v1里面,直接输出就是中序,排序输出就是层序(排序方式,层数小的排前面,相同层数时,index大的排前面)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
#include <iostream> #include <vector> #include <algorithm> using namespace std; struct node { int id, l, r, index, level; } a[100]; vector<node> v1; void dfs(int root, int index, int level) { if (a[root].r != -1) dfs(a[root].r, index * 2 + 2, level + 1); v1.push_back({root, 0, 0, index, level}); if (a[root].l != -1) dfs(a[root].l, index * 2 + 1, level + 1); } bool cmp(node a, node b) { if (a.level != b.level) return a.level < b.level; return a.index > b.index; } int main() { int n, have[100] = {0}, root = 0; cin >> n; for (int i = 0; i < n; i++) { a[i].id = i; string l, r; cin >> l >> r; if (l != "-") { a[i].l = stoi(l); have[stoi(l)] = 1; } else { a[i].l = -1; } if (r != "-") { a[i].r = stoi(r); have[stoi(r)] = 1; } else { a[i].r = -1; } } while (have[root] == 1) root++; dfs(root, 0, 0); vector<node> v2(v1); sort(v2.begin(), v2.end(), cmp); for (int i = 0; i < v2.size(); i++) { if (i != 0) cout << " "; cout << v2[i].id; } cout << endl; for (int i = 0; i < v1.size(); i++) { if (i != 0) cout << " "; cout << v1[i].id; } return 0; } |