A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
The left subtree of a node contains only nodes with keys less than or equal to the node’s key.
The right subtree of a node contains only nodes with keys greater than the node’s key.
Both the left and right subtrees must also be binary search trees.
Insert a sequence of numbers into an initially empty binary search tree. Then you are supposed to count the total number of nodes in the lowest 2 levels of the resulting tree.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<=1000) which is the size of the input sequence. Then given in the next line are the N integers in [-1000 1000] which are supposed to be inserted into an initially empty binary search tree.
Output Specification:
For each case, print in one line the numbers of nodes in the lowest 2 levels of the resulting tree in the format:
n1 + n2 = n
where n1 is the number of nodes in the lowest level, n2 is that of the level above, and n is the sum.
Sample Input:
9
25 30 42 16 20 20 35 -5 28
Sample Output:
2 + 4 = 6
题目大意:输出一个二叉搜索树的最后两层结点个数a和b,以及他们的和c:“a + b = c”
分析:用链表存储,递归构建二叉搜索树,深度优先搜索,传入的参数为结点和当前结点的深度depth,如果当前结点为NULL就更新最大深度maxdepth的值并return,将每一层所对应的结点个数存储在数组num中,输出数组的最后两个的值~~
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
#include <iostream> #include <vector> using namespace std; struct node { int v; struct node *left, *right; }; node* build(node *root, int v) { if(root == NULL) { root = new node(); root->v = v; root->left = root->right = NULL; } else if(v <= root->v) root->left = build(root->left, v); else root->right = build(root->right, v); return root; } vector<int> num(1000); int maxdepth = -1; void dfs(node *root, int depth) { if(root == NULL) { maxdepth = max(depth, maxdepth); return ; } num[depth]++; dfs(root->left, depth + 1); dfs(root->right, depth + 1); } int main() { int n, t; scanf("%d", &n); node *root = NULL; for(int i = 0; i < n; i++) { scanf("%d", &t); root = build(root, t); } dfs(root, 0); printf("%d + %d = %d", num[maxdepth-1], num[maxdepth-2], num[maxdepth-1] + num[maxdepth-2]); return 0; } |